Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 161(2): 133-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243092

RESUMO

Peroxisomes are membrane-bounded organelles that contain enzymes involved in multiple lipid metabolic pathways. Several of these pathways require (re-)activation of fatty acids to coenzyme A (CoA) esters by acyl-CoA synthetases, which may take place inside the peroxisomal lumen or extraperoxisomal. The acyl-CoA synthetases SLC27A2, SLC27A4, ACSL1, and ACSL4 have different but overlapping substrate specificities and were previously reported to be localized in the peroxisomal membrane in addition to other subcellular locations. However, it has remained unclear if the catalytic acyl-CoA synthetase sites of these enzymes are facing the peroxisomal lumen or the cytosolic side of the peroxisomal membrane. To study this topology in cellulo we have developed a microscopy-based method that uses the previously developed self-assembling split superfolder (sf) green fluorescent protein (GFP) assay. We show that this self-assembling split sfGFP method can be used to study the localization as well as the topology of membrane proteins in the peroxisomal membrane, but that it is less suited to study the location of soluble peroxisomal proteins. With the method we could demonstrate that the acyl-CoA synthetase domains of the peroxisome-bound acyl-CoA synthetases SLC27A2 and SLC27A4 are oriented toward the peroxisomal lumen and the domain of ACSL1 toward the cytosol. In contrast to previous reports, ACSL4 was not found in peroxisomes.


Assuntos
Coenzima A Ligases , Peroxissomos , Coenzima A Ligases/metabolismo , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Citosol/metabolismo , Proteínas de Transporte/metabolismo
2.
J Inherit Metab Dis ; 47(2): 302-316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38131282

RESUMO

Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder caused by bi-allelic loss-of-function variants in the MVK gene, resulting in decreased activity of the encoded mevalonate kinase (MK). Clinical presentation ranges from the severe early-lethal mevalonic aciduria to the milder hyper-IgD syndrome (MKD-HIDS), and is in the majority of patients associated with recurrent inflammatory episodes with often unclear cause. Previous studies with MKD-HIDS patient cells indicated that increased temperature, as caused by fever during an inflammatory episode, lowers the residual MK activity, which causes a temporary shortage of non-sterol isoprenoids that promotes the further development of inflammation. Because an increase of the residual MK activity is expected to make MKD-HIDS patients less sensitive to developing inflammatory episodes, we established a cell-based screen that can be used to identify compounds and/or therapeutic targets that promote this increase. Using a reporter HeLa cell line that stably expresses the most common MKD-HIDS variant, MK-V377I, C-terminally tagged with bioluminescent NanoLuc luciferase (nLuc), we screened the Prestwick Chemical Library®, which includes 1280 FDA-approved compounds. Multiple compounds increased MK-V377I-nLuc bioluminescence, including steroids (i.e., glucocorticoids, estrogens, and progestogens), statins and antineoplastic drugs. The glucocorticoids increased MK-V377I-nLuc bioluminescence through glucocorticoid receptor signaling. Subsequent studies in MKD-HIDS patient cells showed that the potent glucocorticoid clobetasol propionate increases gene transcription of MVK and other genes regulated by the transcription factor sterol regulatory element-binding protein 2 (SREBP-2). Our results suggest that increasing the flux through the isoprenoid biosynthesis pathway by targeting the glucocorticoid receptor or SREBP-2 could be a potential therapeutic strategy in MKD-HIDS.


Assuntos
Deficiência de Mevalonato Quinase , Humanos , Deficiência de Mevalonato Quinase/tratamento farmacológico , Deficiência de Mevalonato Quinase/genética , Células HeLa , Receptores de Glucocorticoides/uso terapêutico , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fosfotransferases (Aceptor do Grupo Álcool)
3.
Free Radic Biol Med ; 212: 241-254, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38159891

RESUMO

Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.


Assuntos
Peróxido de Hidrogênio , NAD , Animais , Humanos , Camundongos , NAD/metabolismo , NADP/metabolismo , Dissulfeto de Glutationa/metabolismo , Células HeLa , Células HEK293 , Peróxido de Hidrogênio/metabolismo , Fibroblastos/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glutationa/metabolismo , Oxirredução , Homeostase , Adenina/metabolismo , Mamíferos/metabolismo
4.
Genet Med ; 25(11): 100944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493040

RESUMO

PURPOSE: Zellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD. METHODS: We performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies. RESULTS: We identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients' fibroblasts. CONCLUSION: Our finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.


Assuntos
Síndrome de Zellweger , Humanos , Alelos , Peroxissomos/genética , Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Proteínas/genética , Síndrome de Zellweger/genética
5.
J Biol Chem ; 299(8): 105013, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414147

RESUMO

Peroxisomes and the endoplasmic reticulum (ER) are intimately linked subcellular organelles, physically connected at membrane contact sites. While collaborating in lipid metabolism, for example, of very long-chain fatty acids (VLCFAs) and plasmalogens, the ER also plays a role in peroxisome biogenesis. Recent work identified tethering complexes on the ER and peroxisome membranes that connect the organelles. These include membrane contacts formed via interactions between the ER protein VAPB (vesicle-associated membrane protein-associated protein B) and the peroxisomal proteins ACBD4 and ACBD5 (acyl-coenzyme A-binding domain protein). Loss of ACBD5 has been shown to cause a significant reduction in peroxisome-ER contacts and accumulation of VLCFAs. However, the role of ACBD4 and the relative contribution these two proteins make to contact site formation and recruitment of VLCFAs to peroxisomes remain unclear. Here, we address these questions using a combination of molecular cell biology, biochemical, and lipidomics analyses following loss of ACBD4 or ACBD5 in HEK293 cells. We show that the tethering function of ACBD5 is not absolutely required for efficient peroxisomal ß-oxidation of VLCFAs. We demonstrate that loss of ACBD4 does not reduce peroxisome-ER connections or result in the accumulation of VLCFAs. Instead, the loss of ACBD4 resulted in an increase in the rate of ß-oxidation of VLCFAs. Finally, we observe an interaction between ACBD5 and ACBD4, independent of VAPB binding. Overall, our findings suggest that ACBD5 may act as a primary tether and VLCFA recruitment factor, whereas ACBD4 may have regulatory functions in peroxisomal lipid metabolism at the peroxisome-ER interface.


Assuntos
Proteínas de Membrana , Peroxissomos , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Peroxissomos/metabolismo
6.
J Allergy Clin Immunol ; 152(4): 1025-1031.e2, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37364720

RESUMO

BACKGROUND: In the isoprenoid biosynthesis pathway, mevalonate is phosphorylated in 2 subsequent enzyme steps by MVK and PMVK to generate mevalonate pyrophosphate that is further metabolized to produce sterol and nonsterol isoprenoids. Biallelic pathogenic variants in MVK result in the autoinflammatory metabolic disorder MVK deficiency. So far, however, no patients with proven PMVK deficiency due to biallelic pathogenic variants in PMVK have been reported. OBJECTIVES: This study reports the first patient with functionally confirmed PMVK deficiency, including the clinical, biochemical, and immunological consequences of a homozygous missense variant in PMVK. METHODS: The investigators performed whole-exome sequencing and functional studies in cells from a patient who, on clinical and immunological evaluation, was suspected of an autoinflammatory disease. RESULTS: The investigators identified a homozygous PMVK p.Val131Ala (NM_006556.4: c.392T>C) missense variant in the index patient. Pathogenicity was supported by genetic algorithms and modeling analysis and confirmed in patient cells that revealed markedly reduced PMVK enzyme activity due to a virtually complete absence of PMVK protein. Clinically, the patient showed various similarities as well as distinct features compared to patients with MVK deficiency and responded well to therapeutic IL-1 inhibition. CONCLUSIONS: This study reported the first patient with proven PMVK deficiency due to a homozygous missense variant in PMVK, leading to an autoinflammatory disease. PMVK deficiency expands the genetic spectrum of systemic autoinflammatory diseases, characterized by recurrent fevers, arthritis, and cytopenia and thus should be included in the differential diagnosis and genetic testing for systemic autoinflammatory diseases.

7.
Methods Mol Biol ; 2643: 233-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952190

RESUMO

The development and application of the CRISPR-Cas9 technology for genome editing of mammalian cells have opened up a wealth of possibilities for genetically modifying and manipulating human cells, and use in functional studies or therapeutic approaches.Here we describe the approach that we have been using successfully to generate multiple human cell lines with targeted (partial) gene deletions, i.e., knockout cells, or human cells with modified genomic nucleotide sequences, i.e., knock-in cells, in genes encoding known or putative proteins involved in peroxisome biogenesis or peroxisomal functions.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Sistemas CRISPR-Cas/genética , Peroxissomos/genética , Genoma , Sequência de Bases , Mamíferos/genética
8.
J Lipid Res ; 64(5): 100364, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990386

RESUMO

Peroxisomes are single-membrane bounded organelles that in humans play a dual role in lipid metabolism, including the degradation of very long-chain fatty acids and the synthesis of ether lipids/plasmalogens. The first step in de novo ether lipid synthesis is mediated by the peroxisomal enzyme glyceronephosphate O-acyltransferase, which has a strict substrate specificity reacting only with the long-chain acyl-CoAs. The aim of this study was to determine the origin of these long-chain acyl-CoAs. To this end, we developed a sensitive method for the measurement of de novo ether phospholipid synthesis in cells and, by CRISPR-Cas9 genome editing, generated a series of HeLa cell lines with deficiencies of proteins involved in peroxisomal biogenesis, beta-oxidation, ether lipid synthesis, or metabolite transport. Our results show that the long-chain acyl-CoAs required for the first step of ether lipid synthesis can be imported from the cytosol by the peroxisomal ABCD proteins, in particular ABCD3. Furthermore, we show that these acyl-CoAs can be produced intraperoxisomally by chain shortening of CoA esters of very long-chain fatty acids via beta-oxidation. Our results demonstrate that peroxisomal beta-oxidation and ether lipid synthesis are intimately connected and that the peroxisomal ABC transporters play a crucial role in de novo ether lipid synthesis.


Assuntos
Ácidos Graxos , Plasmalogênios , Humanos , Plasmalogênios/metabolismo , Células HeLa , Ácidos Graxos/metabolismo , Peroxissomos/metabolismo , Oxirredução , Acil Coenzima A/metabolismo , Éteres
9.
J Inherit Metab Dis ; 45(3): 445-455, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174513

RESUMO

A deficiency of 3-hydroxyisobutyric acid dehydrogenase (HIBADH) has been recently identified as a cause of primary 3-hydroxyisobutyric aciduria in two siblings; the only previously recognized primary cause had been a deficiency of methylmalonic semialdehyde dehydrogenase, the enzyme that is immediately downstream of HIBADH in the valine catabolic pathway and is encoded by the ALDH6A1 gene. Here we report on three additional patients from two unrelated families who present with marked and persistent elevations of urine L-3-hydroxyisobutyric acid (L-3HIBA) and a range of clinical findings. Molecular genetic analyses revealed novel, homozygous variants in the HIBADH gene that are private within each family. Evidence for pathogenicity of the identified variants is presented, including enzymatic deficiency of HIBADH in patient fibroblasts. This report describes new variants in HIBADH as an underlying cause of primary 3-hydroxyisobutyric aciduria and expands the clinical spectrum of this recently identified inborn error of valine metabolism. Additionally, we describe a quantitative method for the measurement of D- and L-3HIBA in plasma and urine and present the results of a valine restriction therapy in one of the patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Espectrometria de Massas em Tandem , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cromatografia Líquida , Humanos , Hidroxibutiratos/urina , Oxirredutases , Valina
10.
Front Cell Dev Biol ; 9: 661298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869228

RESUMO

Peroxisome biogenesis disorders within the Zellweger spectrum (PBD-ZSDs) are most frequently associated with the c.2528G>A (p.G843D) mutation in the PEX1 gene (PEX1-G843D), which results in impaired import of peroxisomal matrix proteins and, consequently, defective peroxisomal functions. A recent study suggested that treatment with autophagy inhibitors, in particular hydroxychloroquine, would be a potential therapeutic option for PBD-ZSD patients carrying the PEX1-G843D mutation. Here, we studied whether autophagy inhibition by chloroquine, hydroxychloroquine and 3-methyladenine indeed can improve peroxisomal functions in four different cell types with the PEX1-G843D mutation, including primary patient cells. Furthermore, we studied whether autophagy inhibition may be the mechanism underlying the previously reported improvement of peroxisomal functions by L-arginine in PEX1-G843D cells. In contrast to L-arginine, we observed no improvement but a worsening of peroxisomal metabolic functions and peroxisomal matrix protein import by the autophagy inhibitors, while genetic knock-down of ATG5 and NBR1 in primary patient cells resulted in only a minimal improvement. Our results do not support the use of autophagy inhibitors as potential treatment for PBD-ZSD patients, whereas L-arginine remains a therapeutically promising compound.

11.
Front Cell Dev Biol ; 8: 577637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195217

RESUMO

In mammals, peroxisomes perform crucial functions in cellular metabolism, signaling and viral defense which are essential to the viability of the organism. Molecular cues triggered by changes in the cellular environment induce a dynamic response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal morphology. How the regulation of this process is integrated into the cell's response to different stimuli, including the signaling pathways and factors involved, remains unclear. Here, a cell-based peroxisome proliferation assay has been applied to investigate the ability of different stimuli to induce peroxisome proliferation. We determined that serum stimulation, long-chain fatty acid supplementation and TGFß application all increase peroxisome elongation, a prerequisite for proliferation. Time-resolved mRNA expression during the peroxisome proliferation cycle revealed a number of peroxins whose expression correlated with peroxisome elongation, including the ß isoform of PEX11, but not the α or γ isoforms. An initial map of putative regulatory motif sites in the respective promoters showed a difference between binding sites in PEX11α and PEX11ß, suggesting that these genes may be regulated by distinct pathways. A functional SMAD2/3 binding site in PEX11ß points to the involvement of the TGFß signaling pathway in expression of this gene and thus peroxisome proliferation/dynamics in humans.

12.
Mol Genet Metab ; 130(3): 172-178, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402538

RESUMO

Deficiency of succinate semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1 (ALDH5A1), OMIM 271980, 610045), the second enzyme of GABA degradation, represents a rare autosomal-recessively inherited disorder which manifests metabolically as gamma-hydroxybutyric aciduria. The neurological phenotype includes intellectual disability, autism spectrum, epilepsy and sleep and behavior disturbances. Approximately 70 variants have been reported in the ALDH5A1 gene, half of them being missense variants. In this study, 34 missense variants, of which 22 novel, were evaluated by in silico analyses using PolyPhen2 and SIFT prediction tools. Subsequently, the effect of these variants on SSADH activity was studied by transient overexpression in HEK293 cells. These studies showed severe enzymatic activity impairment for 27 out of 34 alleles, normal activity for one allele and a broad range of residual activities (25 to 74%) for six alleles. To better evaluate the alleles that showed residual activity above 25%, we generated an SSADH-deficient HEK293-Flp-In cell line using CRISPR-Cas9, in which these alleles were stably expressed. This model proved essential in the classification as deficient for one out of the seven studied alleles. For 8 out of 34 addressed alleles, there were discrepant results among the used prediction tools, and/or in correlating the results of the prediction tools with the functional data. In case of diagnostic urgency of missense alleles, we propose the use of the transient transfection model for confirmation of their effect on the SSADH catalytic function, since this model resulted in fast and robust functional characterization for the majority of the tested variants. In selected cases, stable transfections can be considered and may prove valuable.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/patologia , Mutação de Sentido Incorreto , Succinato-Semialdeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Simulação por Computador , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Células HEK293 , Humanos , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
13.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422819

RESUMO

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Assuntos
Alelos , Ácido Aspártico/metabolismo , Encefalopatias/genética , Proteínas de Ligação a Ácido Graxo/genética , Malatos/metabolismo , Mutação , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Sequenciamento do Exoma
14.
Biochim Biophys Acta Biomembr ; 1861(10): 182991, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31129117

RESUMO

Peroxisomes have the intrinsic ability to produce and scavenge hydrogen peroxide (H2O2), a diffusible second messenger that controls diverse cellular processes by modulating protein activity through cysteine oxidation. Current evidence indicates that H2O2, a molecule whose physicochemical properties are similar to those of water, traverses cellular membranes through specific aquaporin channels, called peroxiporins. Until now, no peroxiporin-like proteins have been identified in the peroxisomal membrane, and it is widely assumed that small molecules such as H2O2 can freely permeate this membrane through PXMP2, a non-selective pore-forming protein with an upper molecular size limit of 300-600 Da. By employing the CRISPR-Cas9 technology in combination with a Flp-In T-REx 293 cell line that can be used to selectively generate H2O2 inside peroxisomes in a controlled manner, we provide evidence that PXMP2 is not essential for H2O2 permeation across the peroxisomal membrane, neither in control cells nor in cells lacking PEX11B, a peroxisomal membrane-shaping protein whose yeast homologue facilitates the permeation of molecules up to 400 Da. During the course of this study, we unexpectedly noted that inactivation of PEX11B leads to partial localization of both peroxisomal membrane and matrix proteins to mitochondria and a decrease in peroxisome density. These findings are discussed in terms of the formation of a functional peroxisomal matrix protein import machinery in the outer mitochondrial membrane.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Transporte Proteico
15.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30970188

RESUMO

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Ataxia/genética , Deficiências do Desenvolvimento/genética , Glutaminase/deficiência , Glutaminase/genética , Glutamina/metabolismo , Repetições de Microssatélites , Mutação , Atrofia/genética , Cerebelo/patologia , Pré-Escolar , Feminino , Genótipo , Glutamina/análise , Humanos , Masculino , Fenótipo , Reação em Cadeia da Polimerase , Sequenciamento Completo do Genoma
16.
Am J Hum Genet ; 103(1): 125-130, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29909962

RESUMO

Mendelian disorders of cholesterol biosynthesis typically result in multi-system clinical phenotypes, underlining the importance of cholesterol in embryogenesis and development. FDFT1 encodes for an evolutionarily conserved enzyme, squalene synthase (SS, farnesyl-pyrophosphate farnesyl-transferase 1), which catalyzes the first committed step in cholesterol biosynthesis. We report three individuals with profound developmental delay, brain abnormalities, 2-3 syndactyly of the toes, and facial dysmorphisms, resembling Smith-Lemli-Opitz syndrome, the most common cholesterol biogenesis defect. The metabolite profile in plasma and urine suggested that their defect was at the level of squalene synthase. Whole-exome sequencing was used to identify recessive disease-causing variants in FDFT1. Functional characterization of one variant demonstrated a partial splicing defect and altered promoter and/or enhancer activity, reflecting essential mechanisms for regulating cholesterol biosynthesis/uptake in steady state.


Assuntos
Colesterol/genética , Farnesil-Difosfato Farnesiltransferase/genética , Anormalidades Musculoesqueléticas/genética , Criança , Pré-Escolar , Elementos Facilitadores Genéticos/genética , Feminino , Humanos , Lactente , Masculino , Regiões Promotoras Genéticas/genética , Splicing de RNA/genética , Síndrome de Smith-Lemli-Opitz/genética , Sequenciamento do Exoma/métodos
17.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 952-958, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29287774

RESUMO

Peroxisomal acyl-CoA oxidases catalyze the first step of beta-oxidation of a variety of substrates broken down in the peroxisome. These include the CoA-esters of very long-chain fatty acids, branched-chain fatty acids and the C27-bile acid intermediates. In rat, three peroxisomal acyl-CoA oxidases with different substrate specificities are known, whereas in humans it is believed that only two peroxisomal acyl-CoA oxidases are expressed under normal circumstances. Only three patients with ACOX2 deficiency, including two siblings, have been identified so far, showing accumulation of the C27-bile acid intermediates. Here, we performed biochemical studies in material from a novel ACOX2-deficient patient with increased levels of C27-bile acids in plasma, a complete loss of ACOX2 protein expression on immunoblot, but normal pristanic acid oxidation activity in fibroblasts. Since pristanoyl-CoA is presumed to be handled by ACOX2 specifically, these findings prompted us to re-investigate the expression of the human peroxisomal acyl-CoA oxidases. We report for the first time expression of ACOX3 in normal human tissues at the mRNA and protein level. Substrate specificity studies were done for ACOX1, 2 and 3 which revealed that ACOX1 is responsible for the oxidation of straight-chain fatty acids with different chain lengths, ACOX2 is the only human acyl-CoA oxidase involved in bile acid biosynthesis, and both ACOX2 and ACOX3 are involved in the degradation of the branched-chain fatty acids. Our studies provide new insights both into ACOX2 deficiency and into the role of the different acyl-CoA oxidases in peroxisomal metabolism.


Assuntos
Oxirredutases/genética , Oxirredutases/isolamento & purificação , Acil-CoA Oxidase , Ácidos e Sais Biliares/metabolismo , Consanguinidade , Feminino , Humanos , Recém-Nascido , Fígado/metabolismo , Oxirredutases/deficiência , Paquistão , Especificidade por Substrato
18.
Hum Mol Genet ; 26(13): 2541-2550, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449065

RESUMO

Perrault syndrome (PS) is a rare recessive disorder characterized by ovarian dysgenesis and sensorineural deafness. It is clinically and genetically heterogeneous, and previously mutations have been described in different genes, mostly related to mitochondrial proteostasis. We diagnosed three unrelated females with PS and set out to identify the underlying genetic cause using exome sequencing. We excluded mutations in the known PS genes, but identified a single homozygous mutation in the ERAL1 gene (c.707A > T; p.Asn236Ile). Since ERAL1 protein binds to the mitochondrial 12S rRNA and is involved in the assembly of the small mitochondrial ribosomal subunit, the identified variant represented a likely candidate. In silico analysis of a 3D model for ERAL1 suggested that the mutated residue hinders protein-substrate interactions, potentially affecting its function. On a molecular basis, PS skin fibroblasts had reduced ERAL1 protein levels. Complexome profiling of the cells showed an overall decrease in the levels of assembled small ribosomal subunit, indicating that the ERAL1 variant affects mitochondrial ribosome assembly. Moreover, levels of the 12S rRNA were reduced in the patients, and were rescued by lentiviral expression of wild type ERAL1. At the physiological level, mitochondrial respiration was markedly decreased in PS fibroblasts, confirming disturbed mitochondrial function. Finally, knockdown of the C. elegans ERAL1 homologue E02H1.2 almost completely blocked egg production in worms, mimicking the compromised fertility in PS-affected women. Our cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause PS and are associated with changes in mitochondrial metabolism.


Assuntos
Proteínas de Ligação ao GTP/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos/genética , Animais , Caenorhabditis elegans/genética , Exoma , Feminino , Proteínas de Ligação ao GTP/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Homozigoto , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Mutação de Sentido Incorreto/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequenciamento do Exoma
19.
Methods Mol Biol ; 1595: 63-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409452

RESUMO

Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral transfection of primary human skin fibroblasts.


Assuntos
Fibroblastos/metabolismo , Peroxissomos/metabolismo , Pele/citologia , Transfecção , Humanos , Cultura Primária de Células
20.
J Med Genet ; 54(5): 330-337, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27799409

RESUMO

BACKGROUND: Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient material and in ACBD5-deficient HeLa cells to uncover this role. METHODS: We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing. RESULTS: We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5 protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very long-chain fatty acids (VLCFAs) due to impaired peroxisomal ß-oxidation. No effect on pexophagy was found. CONCLUSIONS: Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in the cytosol and thereby facilitates transport into the peroxisome and subsequent ß-oxidation. Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired VLCFA metabolism, leading to retinal dystrophy and white matter disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Ácidos Graxos/metabolismo , Proteínas de Membrana/deficiência , Peroxissomos/metabolismo , Acil Coenzima A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Pré-Escolar , DNA Complementar/genética , Feminino , Fibroblastos/metabolismo , Teste de Complementação Genética , Células HeLa , Humanos , Lactente , Imageamento por Ressonância Magnética , Proteínas de Membrana/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...